MyJournals Home  

RSS FeedsFungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers (Epidemiologic Perspectives & Innovations)

 
 

5 march 2015 02:51:23

 
Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers (Epidemiologic Perspectives & Innovations)
 


Background: Biofuel use is one of many means of addressing global change caused by anthropogenic release of fossil fuel carbon dioxide into Earth’s atmosphere. To make a meaningful reduction in fossil fuel use, bioethanol must be produced from the entire plant rather than only its starch or sugars. Enzymes produced by fungi constitute a significant percentage of the cost of bioethanol production from non-starch (i.e., lignocellulosic) components of energy crops and agricultural residues. We, and others, have reasoned that fungi that naturally deconstruct plant walls may provide the best enzymes for bioconversion of energy crops. Results: Previously, we have reported on the isolation of 106 fungi from decaying leaves of Miscanthus and sugarcane (Appl Environ Microbiol 77:5490–504, 2011). Here, we thoroughly analyze 30 of these fungi most often found on decaying leaves and stems of these plants, as well as four fungi chosen because they are well-studied for their plant cell wall deconstructing enzymes, for wood decay, or for genetic regulation of plant cell wall deconstruction. We extend our analysis to assess not only their ability over an 8-week period to bioconvert Miscanthus cell walls but also their ability to secrete total protein, to secrete enzymes with the activities of xylanases, exocellulases, endocellulases, and beta-glucosidases, and to remove specific parts of Miscanthus cell walls, that is, glucan, xylan, arabinan, and lignin. Conclusion: This study of fungi that bioconvert energy crops is significant because 30 fungi were studied, because the fungi were isolated from decaying energy grasses, because enzyme activity and removal of plant cell wall components were recorded in addition to biomass conversion, and because the study period was 2 months. Each of these factors make our study the most thorough to date, and we discovered fungi that are significantly superior on all counts to the most widely used, industrial bioconversion fungus, Trichoderma reesei. Many of the best fungi that we found are in taxonomic groups that have not been exploited for industrial bioconversion and the cultures are available from the Centraalbureau voor Schimmelcultures in Utrecht, Netherlands, for all to use.


 
143 viewsCategory: Pathology, Virology
 
Evaluation of the effect of ambrisentan on digital microvascular flow in patients with systemic sclerosis using laser doppler perfusion imaging: a 12-week randomized double-blind placebo controlled trial (Epidemiologic Perspectives & Innovations)
Genetic subgroup of small ruminant lentiviruses that infects sheep homozygous for TMEM154 frameshift deletion mutation A4Δ53 (Epidemiologic Perspectives & Innovations)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Virology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten