MyJournals Home  

RSS FeedsSensors, Vol. 17, Pages 1465: Automatic Detection and Classification of Pole-Like Objects for Urban Cartography Using Mobile Laser Scanning Data (Sensors)

 
 

22 june 2017 11:02:52

 
Sensors, Vol. 17, Pages 1465: Automatic Detection and Classification of Pole-Like Objects for Urban Cartography Using Mobile Laser Scanning Data (Sensors)
 


Mobile laser scanning (MLS) is a modern and powerful technology capable of obtaining massive point clouds of objects in a short period of time. Although this technology is nowadays being widely applied in urban cartography and 3D city modelling, it has some drawbacks that need to be avoided in order to strengthen it. One of the most important shortcomings of MLS data is concerned with the fact that it provides an unstructured dataset whose processing is very time-consuming. Consequently, there is a growing interest in developing algorithms for the automatic extraction of useful information from MLS point clouds. This work is focused on establishing a methodology and developing an algorithm to detect pole-like objects and classify them into several categories using MLS datasets. The developed procedure starts with the discretization of the point cloud by means of a voxelization, in order to simplify and reduce the processing time in the segmentation process. In turn, a heuristic segmentation algorithm was developed to detect pole-like objects in the MLS point cloud. Finally, two supervised classification algorithms, linear discriminant analysis and support vector machines, were used to distinguish between the different types of poles in the point cloud. The predictors are the principal component eigenvalues obtained from the Cartesian coordinates of the laser points, the range of the Z coordinate, and some shape-related indexes. The performance of the method was tested in an urban area with 123 poles of different categories. Very encouraging results were obtained, since the accuracy rate was over 90%.


 
79 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 17, Pages 1457: Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways (Sensors)
Materials, Vol. 10, Pages 684: A Novel Method for Fabricating Wearable, Piezoresistive, and Pressure Sensors Based on Modified-Graphite/Polyurethane Composite Films (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten