MyJournals Home  

RSS FeedsRemote Sensing, Vol. 9, Pages 649: Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission (Remote Sensing)

 
 

23 june 2017 11:45:38

 
Remote Sensing, Vol. 9, Pages 649: Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission (Remote Sensing)
 


The Fluorescence Explorer (FLEX) mission has been selected as ESA`s 8th Earth Explorer mission. The primary objectives of the mission are to provide global estimates of vegetation fluorescence, actual photosynthetic activity, and vegetation stress. FLEX will fly in tandem formation with Sentinel-3 providing ancillary data for atmospheric characterization and correction, vegetation related spectral indices, and land surface temperature. The purpose of this manuscript is to present its scientific payload, FLORIS, which is a push-broom hyperspectral imager, flying on a medium size platform. FLORIS will measure the vegetation fluorescence in the spectral range between 500 nm and 780 nm at medium spatial resolution (300 m) and over a swath of 150 km. It accommodates an imaging spectrometer with a very high spectral resolution (0.3 nm), to measure the fluorescence spectrum within two oxygen absorption bands (O2A and O2B), and a second spectrometer with lower spectral resolution to derive additional atmospheric and vegetation parameters. A compact opto-mechanical solution is the current instrument baseline. A polarization scrambler is placed in front of a common dioptric telescope serving both spectrometers to minimize the polarization sensitivity. The telescope images the ground scene onto a double slit assembly. The radiation is spectrally dispersed onto the focal planes of the grating spectrometers. Special attention has been given to the mitigation of stray-light which is a key factor to reach good accuracy of the fluorescence measurement. The absolute radiometric calibration is achieved by observing a dedicated Sun illuminated Lambertian diffuser, while the spectral calibration in flight is performed by means of vicarious techniques. The thermal stabilization is achieved by using two passive radiators looking directly to the cold space, counterbalanced by heaters in a closed loop system. The focal planes are based on custom developed CCDs. The opto-mechanical design is robust, stable vs. temperature and easy to align. The optical quality is very good as recently demonstrated by the latest tests of an elegant breadboard. The scientific data products comprise the Top Of Atmosphere (TOA) radiance measurements as well as fluorescence estimates and higher-level products related to the health status of the vegetation addressing a wide range of applications from agriculture to forestry and climate.


 
123 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 9, Pages 644: SNR (Signal-To-Noise Ratio) Impact on Water Constituent Retrieval from Simulated Images of Optically Complex Amazon Lakes (Remote Sensing)
Remote Sensing, Vol. 9, Pages 651: Circular Regression Applied to GNSS-R Phase Altimetry (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten