MyJournals Home  

RSS FeedsSensors, Vol. 17, Pages 2045: Research on the Optimum Water Content of Detecting Soil Nitrogen Using Near Infrared Sensor (Sensors)

 
 

7 september 2017 09:04:35

 
Sensors, Vol. 17, Pages 2045: Research on the Optimum Water Content of Detecting Soil Nitrogen Using Near Infrared Sensor (Sensors)
 


Nitrogen is one of the important indexes to evaluate the physiological and biochemical properties of soil. The level of soil nitrogen content influences the nutrient levels of crops directly. The near infrared sensor can be used to detect the soil nitrogen content rapidly, nondestructively, and conveniently. In order to investigate the effect of the different soil water content on soil nitrogen detection by near infrared sensor, the soil samples were dealt with different drying times and the corresponding water content was measured. The drying time was set from 1 h to 8 h, and every 1 h 90 samples (each nitrogen concentration of 10 samples) were detected. The spectral information of samples was obtained by near infrared sensor, meanwhile, the soil water content was calculated every 1 h. The prediction model of soil nitrogen content was established by two linear modeling methods, including partial least squares (PLS) and uninformative variable elimination (UVE). The experiment shows that the soil has the highest detection accuracy when the drying time is 3 h and the corresponding soil water content is 1.03%. The correlation coefficients of the calibration set are 0.9721 and 0.9656, and the correlation coefficients of the prediction set are 0.9712 and 0.9682, respectively. The prediction accuracy of both models is high, while the prediction effect of PLS model is better and more stable. The results indicate that the soil water content at 1.03% has the minimum influence on the detection of soil nitrogen content using a near infrared sensor while the detection accuracy is the highest and the time cost is the lowest, which is of great significance to develop a portable apparatus detecting nitrogen in the field accurately and rapidly.


 
98 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 17, Pages 2035: Impact Mechanical Response of a 2-2 Cement-Based Piezoelectric Sensor Considering the Electrode Layer Effect (Sensors)
Sensors, Vol. 17, Pages 2046: Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten