MyJournals Home  

RSS FeedsEnergies, Vol. 10, Pages 1636: Advances in Integrated Vehicle Thermal Management and Numerical Simulation (Energies)


18 october 2017 11:47:09

Energies, Vol. 10, Pages 1636: Advances in Integrated Vehicle Thermal Management and Numerical Simulation (Energies)

With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM) system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV), its integrated thermal management (ITM) mainly contains internal combustion engine (ICE) cooling, turbo-charged cooling, exhaust gas recirculation (EGR) cooling, lubrication cooling and air conditioning (AC) or heat pump (HP). As for electric vehicles (EVs), the ITM mainly includes battery cooling/preheating, electric machines (EM) cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM). Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D). Digg Facebook Google StumbleUpon Twitter
65 viewsCategory: Biophysics, Biotechnology, Physics
Energies, Vol. 10, Pages 1638: Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions (Energies)
Energies, Vol. 10, Pages 1643: Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness (Energies)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2018 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn