MyJournals Home  

RSS FeedsIJMS, Vol. 19, Pages 1485: PIMT/NCOA6IP Deletion in the Mouse Heart Causes Delayed Cardiomyopathy Attributable to Perturbation in Energy Metabolism (International Journal of Molecular Sciences)

 
 

20 may 2018 18:03:15

 
IJMS, Vol. 19, Pages 1485: PIMT/NCOA6IP Deletion in the Mouse Heart Causes Delayed Cardiomyopathy Attributable to Perturbation in Energy Metabolism (International Journal of Molecular Sciences)
 


PIMT/NCOA6IP, a transcriptional coactivator PRIP/NCOA6 binding protein, enhances nuclear receptor transcriptional activity. Germline disruption of PIMT results in early embryonic lethality due to impairment of development around blastocyst and uterine implantation stages. We now generated mice with Cre-mediated cardiac-specific deletion of PIMT (csPIMT−/−) in adult mice. These mice manifest enlargement of heart, with nearly 100% mortality by 7.5 months of age due to dilated cardiomyopathy. Significant reductions in the expression of genes (i) pertaining to mitochondrial respiratory chain complexes I to IV; (ii) calcium cycling cardiac muscle contraction (Atp2a1, Atp2a2, Ryr2); and (iii) nuclear receptor PPAR- regulated genes involved in glucose and fatty acid energy metabolism were found in csPIMT−/− mouse heart. Elevated levels of Nppa and Nppb mRNAs were noted in csPIMT−/− heart indicative of myocardial damage. These hearts revealed increased reparative fibrosis associated with enhanced expression of Tgfβ2 and Ctgf. Furthermore, cardiac-specific deletion of PIMT in adult mice, using tamoxifen-inducible Cre-approach (TmcsPIMT−/−), results in the development of cardiomyopathy. Thus, cumulative evidence suggests that PIMT functions in cardiac energy metabolism by interacting with nuclear receptor coactivators and this property could be useful in the management of heart failure.


 
57 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 19, Pages 1486: Modulating Chemosensitivity of Tumors to Platinum-Based Antitumor Drugs by Transcriptional Regulation of Copper Homeostasis (International Journal of Molecular Sciences)
IJMS, Vol. 19, Pages 1479: B-Myb Mediates Proliferation and Migration of Non-Small-Cell Lung Cancer via Suppressing IGFBP3 (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten