MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 970: Remote Sensing of Leaf Area Index from LiDAR Height Percentile Metrics and Comparison with MODIS Product in a Selectively Logged Tropical Forest Area in Eastern Amazonia (Remote Sensing)

 
 

18 june 2018 11:00:47

 
Remote Sensing, Vol. 10, Pages 970: Remote Sensing of Leaf Area Index from LiDAR Height Percentile Metrics and Comparison with MODIS Product in a Selectively Logged Tropical Forest Area in Eastern Amazonia (Remote Sensing)
 


Leaf area index (LAI) is an important parameter to describe the capacity of forests to intercept light and thus affects the microclimate and photosynthetic capacity of canopies. In general, tropical forests have a higher leaf area index and it is a challenge to estimate LAI in a forest with a very dense canopy. In this study, it is assumed that the traditional Light Detection and Ranging (LiDAR)-derived fractional vegetation cover (fCover) has weak relationship with leaf area index in a dense forest. We propose a partial least squares (PLS) regression model using the height percentile metrics derived from airborne LiDAR data to estimate the LAI of a dense forest. Ground inventory and airborne LiDAR data collected in a selectively logged tropical forest area in Eastern Amazonia are used to map LAI from the plot level to the landscape scale. The results indicate that the fCover, derived from the first return or the last return, has no significant correlations with the ground-based LAI. The PLS model evaluated by the leave-one-out validation shows that the estimated LAI is significantly correlated with the ground-based LAI with an R2 of 0.58 and a root mean square error (RMSE) of 1.13. A data comparison indicates that the Moderate Resolution Imaging Spectrometer (MODIS) LAI underestimates the landscape-level LAI by about 22%. The MODIS quality control data show that in the selected tile, the cloud state is not the primary factor affecting the MODIS LAI performance; rather, the LAI from the main radiative transfer (RT) algorithm contributes much to the underestimation of the LAI in the tropical forest. In addition, the results show that the LiDAR-based LAI has a better response to the logging activities than the MODIS-based LAI, and that the leaf area reduction caused by logging is about 13%. In contrast, the MODIS-based LAI exhibits no apparent spatial correlation with the LiDAR-based LAI. It is suggested that the main algorithm of MODIS should be improved with regard to tropical forests. The significance of this study is the proposal of a framework to produce ground-based LAI using forest inventory data and determine the plot-level LAI at the airborne and satellite scale using LiDAR data.


 
66 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 10, Pages 822: Multimodal Ground-Based Cloud Classification Using Joint Fusion Convolutional Neural Network (Remote Sensing)
Remote Sensing, Vol. 10, Pages 969: Relation between Convective Rainfall Properties and Antecedent Soil Moisture Heterogeneity Conditions in North Africa (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten