MyJournals Home  

RSS FeedsMaterials, Vol. 11, Pages 1027: An Investigation of the Wear on Silicon Surface at High Humidity (Materials)

 
 

18 june 2018 18:01:23

 
Materials, Vol. 11, Pages 1027: An Investigation of the Wear on Silicon Surface at High Humidity (Materials)
 


Using an atomic force microscope (AFM), the wear of monocrystalline silicon (covered by a native oxide layer) at high humidity was investigated. The experimental results indicated that tribochemistry played an important role in the wear of the silicon at different relative humidity levels (RH = 60%, 90%). Since the tribochemical reactions were facilitated at 60% RH, the wear of silicon was serious and the friction force was around 1.58 μN under the given conditions. However, the tribochemical reactions were restrained when the wear pair was conducted at high humidity. As a result, the wear of silicon was very slight and the friction force decreased to 0.85 μN at 90% RH. The slight wear of silicon at high humidity was characterized by etching tests. It was demonstrated that the silicon sample surface was partly damaged and the native oxide layer on silicon sample surface had not been totally removed during the wear process. These results may help us optimize the tribological design of dynamic microelectromechanical systems working in humid conditions.


 
61 viewsCategory: Chemistry, Physics
 
Materials, Vol. 11, Pages 1028: Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure (Materials)
Materials, Vol. 11, Pages 1026: Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten