MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 1216: UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health (Remote Sensing)


15 august 2018 10:01:21

Remote Sensing, Vol. 10, Pages 1216: UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health (Remote Sensing)

The development of methods that can accurately detect physiological stress in forest trees caused by biotic or abiotic factors is vital for ensuring productive forest systems that can meet the demands of the Earth’s population. The emergence of new sensors and platforms presents opportunities to augment traditional practices by combining remotely-sensed data products to provide enhanced information on forest condition. We tested the sensitivity of multispectral imagery collected from time-series unmanned aerial vehicle (UAV) and satellite imagery to detect herbicide-induced stress in a carefully controlled experiment carried out in a mature Pinus radiata D. Don plantation. The results revealed that both data sources were sensitive to physiological stress in the study trees. The UAV data were more sensitive to changes at a finer spatial resolution and could detect stress down to the level of individual trees. The satellite data tested could only detect physiological stress in clusters of four or more trees. Resampling the UAV imagery to the same spatial resolution as the satellite imagery revealed that the differences in sensitivity were not solely the result of spatial resolution. Instead, vegetation indices suited to the sensor characteristics of each platform were required to optimise the detection of physiological stress from each data source. Our results define both the spatial detection threshold and the optimum vegetation indices required to implement monitoring of this forest type. A comparison between time-series datasets of different spectral indices showed that the two sensors are compatible and can be used to deliver an enhanced method for monitoring physiological stress in forest trees at various scales. We found that the higher resolution UAV imagery was more sensitive to fine-scale instances of herbicide induced physiological stress than the RapidEye imagery. Although less sensitive to smaller phenomena the satellite imagery was found to be very useful for observing trends in physiological stress over larger areas. Digg Facebook Google StumbleUpon Twitter
44 viewsCategory: Geology, Physics
Remote Sensing, Vol. 10, Pages 1217: Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France (Remote Sensing)
Remote Sensing, Vol. 10, Pages 1215: Filtering Stems and Branches from Terrestrial Laser Scanning Point Clouds Using Deep 3-D Fully Convolutional Networks (Remote Sensing)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn