MyJournals Home  

RSS FeedsSensors, Vol. 18, Pages 3408: Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling (Sensors)

 
 

13 october 2018 20:01:18

 
Sensors, Vol. 18, Pages 3408: Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling (Sensors)
 


Sustainable freshwater management is underpinned by technologies which improve the efficiency of agricultural irrigation systems. Irrigation scheduling has the potential to incorporate real-time feedback from soil moisture and climatic sensors. However, for robust closed-loop decision support, models of the soil moisture dynamics are essential in order to predict crop water needs while adapting to external perturbation and disturbances. This paper presents a Dynamic Neural Network approach for modelling of the temporal soil moisture fluxes. The models are trained to generate a one-day-ahead prediction of the volumetric soil moisture content based on past soil moisture, precipitation, and climatic measurements. Using field data from three sites, a R 2 value above 0.94 was obtained during model evaluation in all sites. The models were also able to generate robust soil moisture predictions for independent sites which were not used in training the models. The application of the Dynamic Neural Network models in a predictive irrigation scheduling system was demonstrated using AQUACROP simulations of the potato-growing season. The predictive irrigation scheduling system was evaluated against a rule-based system that applies irrigation based on predefined thresholds. Results indicate that the predictive system achieves a water saving ranging between 20 and 46% while realizing a yield and water use efficiency similar to that of the rule-based system.


 
95 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 18, Pages 3410: A Complete Feasible and Nodes-Grouped Scheduling Algorithm for Wireless Rechargeable Sensor Networks in Tunnels (Sensors)
Sensors, Vol. 18, Pages 3406: Multi-Objective Optimization of a Wireless Body Area Network for Varying Body Positions (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten