MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 1630: Estimation of LAI in Winter Wheat from Multi-Angular Hyperspectral VNIR Data: Effects of View Angles and Plant Architecture (Remote Sensing)


13 october 2018 23:00:32

Remote Sensing, Vol. 10, Pages 1630: Estimation of LAI in Winter Wheat from Multi-Angular Hyperspectral VNIR Data: Effects of View Angles and Plant Architecture (Remote Sensing)

View angle effects present in crop canopy spectra are critical for the retrieval of the crop canopy leaf area index (LAI). In the past, the angular effects on spectral vegetation indices (VIs) for estimating LAI, especially in crops with different plant architectures, have not been carefully assessed. In this study, we assessed the effects of the view zenith angle (VZA) on relationships between the spectral VIs and LAI. We measured the multi-angular hyperspectral reflectance and LAI of two cultivars of winter wheat, erectophile (W411) and planophile (W9507), across different growing seasons. The reflectance of each angle was used to calculate a variety of VIs that have already been published in the literature as well as all possible band combinations of Normalized Difference Spectral Indices (NDSIs). The above indices, along with the raw reflectance of representative bands, were evaluated with measured LAI across the view zenith angle for each cultivar of winter wheat. Data analysis was also supported by the use of the PROSAIL (PROSPECT + SAIL) model to simulate a range of bidirectional reflectance. The study confirmed that the strength of linear relationships between different spectral VIs and LAI did express different angular responses depending on plant type. LAI–VI correlations were generally stronger in erectophile than in planophile wheat types, especially at the zenith angle where the background is expected to be more evident for erectophile type wheat. The band combinations and formulas of the indices also played a role in shaping the angular signatures of the LAI–VI correlations. Overall, off-nadir angles served better than nadir angle and narrow-band indices, especially NDSIs with combinations of a red-edge (700~720 nm) and a green band, were more useful for LAI estimation than broad-band indices for both types of winter wheat. But the optimal angles much differed between two plant types and among various VIs. High significance (R2 > 0.9) could be obtained by selecting appropriate VIs and view angles on both the backward and forward scattering direction. These results from the in-situ measurements were also corroborated by the simulation analysis using the PROSAIL model. For the measured datasets, the highest coefficient was obtained by NDSI(536,720) at −35° in the backward (R2 = 0.971) and NDSI(571,707) at 55° in the forward scattering direction (R2 = 0.984) for the planophile and erectophile varieties, respectively. This work highlights the influence of view geometry and plant architecture. The identification of crop plant type is highly recommended before using remote sensing VIs for the large-scale mapping of vegetation biophysical variables. Digg Facebook Google StumbleUpon Twitter
260 viewsCategory: Geology, Physics
Remote Sensing, Vol. 10, Pages 1596: Delineation of Built-Up Areas from Very High-Resolution Satellite Imagery Using Multi-Scale Textures and Spatial Dependence (Remote Sensing)
Remote Sensing, Vol. 10, Pages 1629: Automated Attitude Determination for Pushbroom Sensors Based on Robust Image Matching (Remote Sensing)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn