MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 1629: Automated Attitude Determination for Pushbroom Sensors Based on Robust Image Matching (Remote Sensing)

 
 

13 october 2018 23:00:32

 
Remote Sensing, Vol. 10, Pages 1629: Automated Attitude Determination for Pushbroom Sensors Based on Robust Image Matching (Remote Sensing)
 


Accurate attitude information from a satellite image sensor is essential for accurate map projection and reducing computational cost for post-processing of image registration, which enhance image usability, such as change detection. We propose a robust attitude-determination method for pushbroom sensors onboard spacecraft by matching land features in well registered base-map images and in observed images, which extends the current method that derives satellite attitude using an image taken with 2-D image sensors. Unlike 2-D image sensors, a pushbroom sensor observes the ground by changing its position and attitude according to the trajectory of a satellite. To address pushbroom-sensor observation, the proposed method can trace the temporal variation in the sensor attitude by combining the robust matching technique for a 2-D image sensor and a non-linear least squares approach, which can express gradual time evolution of the sensor attitude. Experimental results using images taken from a visible and near infrared pushbroom sensor of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard Terra as test image and Landsat-8/OLI images as a base map show that the proposed method can determine satellite attitude with an accuracy of 0.003° (corresponding to the 2-pixel scale of ASTER) in roll and pitch angles even for a scene in which there are many cloud patches, whereas the determination accuracy remains 0.05° in the yaw angle that does not affect accuracy of image registration compared with the other two axes. In addition to the achieved attitude accuracy that was better than that using star trackers (0.01°) regarding roll and pitch angles, the proposed method does not require any attitude information from onboard sensors. Therefore, the proposed method may contribute to validating and calibrating attitude sensors in space, at the same time better accuracy will contribute to reducing computational cost in post-processing for image registration.


 
126 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 10, Pages 1630: Estimation of LAI in Winter Wheat from Multi-Angular Hyperspectral VNIR Data: Effects of View Angles and Plant Architecture (Remote Sensing)
Remote Sensing, Vol. 10, Pages 1628: Quantifying the Reflectance Anisotropy Effect on Albedo Retrieval from Remotely Sensed Observations Using Archetypal BRDFs (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten