MyJournals Home  

RSS FeedsMolecules, Vol. 23, Pages 2586: Optimization of Fermentation Condition for Echinacoside Yield Improvement with Penicillium sp. H1, an Endophytic Fungus Isolated from Ligustrum lucidum Ait Using Response Surface Methodology (Molecules)

 
 

14 october 2018 21:01:44

 
Molecules, Vol. 23, Pages 2586: Optimization of Fermentation Condition for Echinacoside Yield Improvement with Penicillium sp. H1, an Endophytic Fungus Isolated from Ligustrum lucidum Ait Using Response Surface Methodology (Molecules)
 


(1) Background: Application of echinacoside has become increasingly important for its significant biological activities. However, there are many disadvantages in existing synthesis methods such as contaminating the environment, harsh reaction conditions and so on. Therefore, it is urgent to invent a novel alternative method that can increase the yield of echinacoside. (2) Methods: In this study, we isolated and purified an endophyte from the leaves of Ligustrum lucidum Ait. Then, we improved the yield of echinacoside by optimizing the fermentation condition with an endophytic fungus. Penicillium sp. H1 was isolated from Ligustrum lucidum Ait. In addition, response surface methodology was used to optimize the fermentation condition. (3) Results: The results indicate that the maximal yield of echinacoside (37.16 mg/L) was obtained when inoculation rate, temperature and days were 13.98%, 27.85 °C and 26.06 days, respectively. The yield of echinacoside was 150.47 times higher under the optimal conditions than under the control conditions. The results indicate that the yield of echinacoside could be improved with endophytic fermentation by optimizing the fermentation condition. We provide an alternative method for echinacoside production by endophytic fermentation in this paper. It may have a profound effect on the application of echinacoside.


 
128 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 23, Pages 2587: Acylphloroglucinol Derivatives from Garcinia multiflora with Anti-Inflammatory Effect in LPS-Induced RAW264.7 Macrophages (Molecules)
Molecules, Vol. 23, Pages 2585: Identification of Alkaloids from Corydalis yanhusuo W. T. Wang as Dopamine D1 Receptor Antagonists by Using CRE-Luciferase Reporter Gene Assay (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten