MyJournals Home  

RSS FeedsEnergies, Vol. 11, Pages 2822: Short-Term Electric Power Forecasting Using Dual-Stage Hierarchical Wavelet- Particle Swarm Optimization- Adaptive Neuro-Fuzzy Inference System PSO-ANFIS Approach Based On Climate Change (Energies)

 
 

20 october 2018 04:02:46

 
Energies, Vol. 11, Pages 2822: Short-Term Electric Power Forecasting Using Dual-Stage Hierarchical Wavelet- Particle Swarm Optimization- Adaptive Neuro-Fuzzy Inference System PSO-ANFIS Approach Based On Climate Change (Energies)
 


Analyzing electrical power generation for a wind turbine has associated inaccuracies due to fluctuations in environmental factors, mechanical alterations of wind turbines, and natural disaster. Thus, development of a highly reliable prediction model based on climatic conditions is crucial in forecasting electrical power for proper management of energy demand and supply. This is essential because early forecasting systems will enable an energy supplier to schedule and manage resources efficiently. In this research, we have put forward a novel electrical power prediction model using wavelet and particle swarm optimization based dual-stage adaptive neuro-fuzzy inference system (dual-stage Wavelet-PSO-ANFIS) for precise estimation of electrical power generation based on climatic factors. The first stage is used to project wind speed based on meteorological data available, while the second stage took the output wind speed prediction to predict electrical power based on actual supervisory control and data acquisition (SCADA). Furthermore, influence of data dependence on the forecasting accuracy for both stages is analyzed using a subset of data as input to predict the wind power which was also compared with other existing electrical power forecasting techniques. This paper defines the basic framework and the performance evaluation of a dual-stage Wavelet-PSO-ANFIS based electrical power forecasting system using a practical implementation.


 
102 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 11, Pages 2823: Wind Turbine Wake Characterization for Improvement of the Ainslie Eddy Viscosity Wake Model (Energies)
Energies, Vol. 11, Pages 2821: PLDAD--An Algorihm to Reduce Data Center Energy Consumption (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten