MyJournals Home  

RSS FeedsMaterials, Vol. 11, Pages 2046: Microstructure and Mechanical Properties of ZrB2-HfC Ceramics Influenced by HfC Addition (Materials)

 
 

20 october 2018 15:00:06

 
Materials, Vol. 11, Pages 2046: Microstructure and Mechanical Properties of ZrB2-HfC Ceramics Influenced by HfC Addition (Materials)
 


ZrB2–HfC ceramics have been fabricated using the liquid phase sintering technique at a sintering temperature as low as 1750 °C through the addition of Ni. The effects of HfC addition on the microstructure and mechanical properties of ZrB2–based ceramics have been investigated. These ceramics were composed of ZrB2, HfC, Ni, and a small amount of possible (Zr, Hf)B2 solid solution. Small HfC grains were distributed among ZrB2 grain boundaries. These small grains could improve the density of ZrB2–based ceramics and play a pinning role. With HfC content increasing from 10 wt % to 30 wt %, more HfC grains were distributed among ZrB2 grain boundaries, leading to weaker interface bonding among HfC grains; the relative density and Vickers hardness increased, and flexural strength and fracture toughness decreased. The weak interface bonding for 20 and 30 wt % HfC contents was the main cause of the decrease in both flexural strength and fracture toughness.


 
107 viewsCategory: Chemistry, Physics
 
Materials, Vol. 11, Pages 2047: Feasibility of a Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/poly-d/l-lactide Composite as a Regenerative Biomaterial in Maxillofacial Surgery (Materials)
Materials, Vol. 11, Pages 2045: Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten