MyJournals Home  

RSS FeedsUropathogenic Escherichia coli invades bladder epithelial cells by activating kinase networks in host cells [Molecular Bases of Disease] (Journal of Biological Chemistry)

 
 

21 october 2018 10:00:16

 
Uropathogenic Escherichia coli invades bladder epithelial cells by activating kinase networks in host cells [Molecular Bases of Disease] (Journal of Biological Chemistry)
 


Uropathogenic Escherichia coli (UPEC) is the causative bacterium in most urinary tract infections (UTIs). UPEC cells adhere to and invade bladder epithelial cells (BECs) and cause uropathogenicity. Invading UPEC cells may encounter one of several fates, including degradation in the lysosome, expulsion to the extracellular milieu for clearance, or survival as an intracellular bacterial community and quiescent intracellular reservoir that can cause later infections. Here we considered the possibility that UPEC cells secrete factors that activate specific host cell signaling networks to facilitate the UPEC invasion of BECs. Using GFP-based reporters and Western blot analysis, we found that the representative human cystitis isolate E. coli UTI89 and its derivative UTI89?FimH, which does not bind to BECs, equally activate phosphatidylinositol 4,5-bisphosphate 3-OH kinase (PI3K), Akt kinase, and mTOR complex (mTORC) 1 and 2 in BECs. We also found that conditioned medium taken from UTI89 and UTI89?FimH cultures similarly activates epidermal growth factor receptor (EGFR), PI3K, Akt, and mTORC and that inhibition of EGFR and mTORC2, but not mTORC1, abrogates UTI89 invasion in vitro and in animal models of UTI. Our results reveal a key molecular mechanism of UPEC invasion and the host cells it targets, insights that may have therapeutic utility for managing the ever-increasing number of persistent and chronic UTIs.


 
94 viewsCategory: Biochemistry
 
Complementary recognition of the receptor-binding site of highly pathogenic H5N1 influenza viruses by two human neutralizing antibodies [Protein Structure and Folding] (Journal of Biological Chemistry)
The NF{kappa}B subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells [Signal Transduction] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten