MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 1781: Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy) (Remote Sensing)


10 november 2018 12:00:15

Remote Sensing, Vol. 10, Pages 1781: Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy) (Remote Sensing)

The Copernicus Sentinel-1 mission provides synthetic aperture radar (SAR) acquisitions over large areas with high temporal and spatial resolution. This new generation of satellites providing open-data products has enhanced the capabilities for continuously studying Earth surface changes. Over the past two decades, several studies have demonstrated the potential of differential synthetic aperture radar interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in mountainous environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in nonurban areas), atmospheric conditions, or high ground surface velocity. In this study, the kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tyrol, Italy), are monitored by a network of three permanent and 13 monthly measured benchmark points measured with the differential global navigation satellite system (DGNSS) technique. The slope displacement rates are found to be highly unsteady and reach several meters a year. This paper focuses firstly on evaluating the performance of DInSAR changing unwrapping and coherence parameters with Sentinel-1 imagery, and secondly, on applying DInSAR with DGNSS measurements to monitor an active and complex landslide. To this end, 41 particular SAR images, coherence thresholds, and 2D and 3D unwrapping processes give various results in terms of reliability and accuracy, supporting the understanding of the landslide velocity field. Evolutions of phase changes are analysed according to the coherence, the changing field conditions, and the monitored ground-based displacements. Digg Facebook Google StumbleUpon Twitter
41 viewsCategory: Geology, Physics
Remote Sensing, Vol. 10, Pages 1782: Fast Cloud Segmentation Using Convolutional Neural Networks (Remote Sensing)
Remote Sensing, Vol. 10, Pages 1780: A Persistent Scatterer Interferometry Procedure Based on Stable Areas to Filter the Atmospheric Component (Remote Sensing)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn