MyJournals Home  

RSS FeedsRemote Sensing, Vol. 10, Pages 1794: Tree Species Classification with Multi-Temporal Sentinel-2 Data (Remote Sensing)

 
 

15 november 2018 03:00:17

 
Remote Sensing, Vol. 10, Pages 1794: Tree Species Classification with Multi-Temporal Sentinel-2 Data (Remote Sensing)
 


The Sentinel-2 program provides the opportunity to monitor terrestrial ecosystems with a high temporal and spectral resolution. In this study, a multi-temporal Sentinel-2 data set was used to classify common tree species over a mature forest in central Sweden. The tree species to be classified were Norway spruce (Picea abies), Scots pine (Pinus silvestris), Hybrid larch (Larix × marschlinsii), Birch (Betula sp.) and Pedunculate oak (Quercus robur). Four Sentinel-2 images from spring (7 April and 27 May), summer (9 July) and fall (19 October) of 2017 were used along with the Random Forest (RF) classifier. A variable selection approach was implemented to find fewer and uncorrelated bands resulting in the best model for tree species identification. The final model resulting in the highest overall accuracy (88.2%) came from using all bands from the four image dates. The single image that gave the most accurate classification result (80.5%) was the late spring image (27 May); the 27 May image was always included in subsequent image combinations that gave the highest overall accuracy. The five tree species were classified with a user`s accuracy ranging from 70.9% to 95.6%. Thirteen of the 40 bands were selected in a variable selection procedure and resulted in a model with only slightly lower accuracy (86.3%) than that using all bands. Among the highest ranked bands were the red edge bands 2 and 3 as well as the narrow NIR (near-infrared) band 8a, all from the 27 May image, and SWIR (short-wave infrared) bands from all four image dates. This study shows that the red-edge bands and SWIR bands from Sentinel-2 are of importance, and confirms that spring and/or fall images capturing phenological differences between the species are most useful to tree species classification.


 
104 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 10, Pages 1795: Long-Term Arctic Snow/Ice Interface Temperature from Special Sensor for Microwave Imager Measurements (Remote Sensing)
Remote Sensing, Vol. 10, Pages 1793: Best Practices in Crafting the Calibrated, Enhanced-Resolution Passive-Microwave EASE-Grid 2.0 Brightness Temperature Earth System Data Record (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten