MyJournals Home  

RSS FeedsSensors, Vol. 18, Pages 3895: Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ? (Sensors)

 
 

15 november 2018 19:00:10

 
Sensors, Vol. 18, Pages 3895: Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ? (Sensors)
 


In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications.


 
82 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 18, Pages 3896: An Improved ACKF/KF Initial Alignment Method for Odometer-Aided Strapdown Inertial Navigation System (Sensors)
Sensors, Vol. 18, Pages 3894: A Blockchain-Based Location Privacy Protection Incentive Mechanism in Crowd Sensing Networks (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten