MyJournals Home  

RSS FeedsIJMS, Vol. 19, Pages 3933: Using the 6RLKu Minichromosome of Rye (Secale cereale L.) to Create Wheat-Rye 6D/6RLKu Small Segment Translocation Lines with Powdery Mildew Resistance (International Journal of Molecular Sciences)

 
 

8 december 2018 18:00:15

 
IJMS, Vol. 19, Pages 3933: Using the 6RLKu Minichromosome of Rye (Secale cereale L.) to Create Wheat-Rye 6D/6RLKu Small Segment Translocation Lines with Powdery Mildew Resistance (International Journal of Molecular Sciences)
 




Long arms of rye (Secale cereale L.) chromosome 6 (6RL) carry powdery mildew resistance genes. However, these sources of resistance have not yet been successfully used in commercial wheat cultivars. The development of small segment translocation chromosomes carrying resistance may result in lines carrying the 6R chromosome becoming more commercially acceptable. However, no wheat-rye 6RL small segment translocation line with powdery mildew resistance has been reported. In this study, a wheat-rye 6RLKu minichromosome addition line with powdery mildew resistance was identified, and this minichromosome was derived from the segment between L2.5 and L2.8 of the 6RLKu chromosome arm. Following irradiation, the 6RLKu minichromosome divided into two smaller segments, named 6RLKumi200 and 6RLKumi119, and these fragments participated in the formation of wheat-rye small segment translocation chromosomes 6DS/6RLKumi200 and 6DL/6RLKumi119, respectively. The powdery mildew resistance gene was found to be located on the 6RLKumi119 segment. Sixteen 6RLKumi119-specific markers were developed, and their products were cloned and sequenced. Nucleotide BLAST searches indicated that 14 of the 16 sequences had 91–100% similarity with nine scaffolds derived from 6R chromosome of S. cereale L. Lo7. The small segment translocation chromosome 6DL/6RLKumi119 makes the practical utilization in agriculture of powdery mildew resistance gene on 6RLKu more likely. The nine scaffolds are useful for further studying the structure and function of this small segment.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
12 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 19, Pages 3934: Root Abscisic Acid Contributes to Defending Photoinibition in Jerusalem Artichoke (Helianthus tuberosus L.) under Salt Stress (International Journal of Molecular Sciences)
IJMS, Vol. 19, Pages 3932: A Conserved Glycine Is Identified to be Essential for Desaturase Activity of IpFAD2s by Analyzing Natural Variants from Idesia polycarpa (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2018 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn