MyJournals Home  

RSS FeedsIJMS, Vol. 19, Pages 4094: Idi1 and Hmgcs2 Are Affected by Stretch in HL-1 Atrial Myocytes (International Journal of Molecular Sciences)

 
 

18 december 2018 17:01:27

 
IJMS, Vol. 19, Pages 4094: Idi1 and Hmgcs2 Are Affected by Stretch in HL-1 Atrial Myocytes (International Journal of Molecular Sciences)
 


Background: Lipid expression is increased in the atrial myocytes of mitral regurgitation (MR) patients. This study aimed to investigate key regulatory genes and mechanisms of atrial lipotoxic myopathy in MR. Methods: The HL-1 atrial myocytes were subjected to uniaxial cyclic stretching for eight hours. Fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism were analyzed by PCR assay (168 genes). Results: The stretched myocytes had significantly larger cell size and higher lipid expression than non-stretched myocytes (all p < 0.001). Fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism in the myocytes were analyzed by PCR assay (168 genes). In comparison with their counterparts in non-stretched myocytes, seven genes in stretched monocytes (Idi1, Olr1, Nr1h4, Fabp2, Prkag3, Slc27a5, Fabp6) revealed differential upregulation with an altered fold change >1.5. Nine genes in stretched monocytes (Apoa4, Hmgcs2, Apol8, Srebf1, Acsm4, Fabp1, Acox2, Acsl6, Gk) revealed differential downregulation with an altered fold change <0.67. Canonical pathway analysis, using Ingenuity Pathway Analysis software, revealed that the only genes in the “superpathway of cholesterol biosynthesis” were Idi1 (upregulated) and Hmgcs2 (downregulated). The fraction of stretched myocytes expressing Nile red was significantly decreased by RNA interference of Idi1 (p < 0.05) and was significantly decreased by plasmid transfection of Hmgcs2 (p = 0.004). Conclusions: The Idi1 and Hmgcs2 genes have regulatory roles in atrial lipotoxic myopathy associated with atrial enlargement.


 
99 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 19, Pages 4095: ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells (International Journal of Molecular Sciences)
IJMS, Vol. 19, Pages 4093: Molecular Mechanisms and Pathophysiology of Ischemia-Reperfusion Injury (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten