MyJournals Home  

RSS FeedsComputational approaches for the analysis of RNA-protein interactions: A primer for biologists [Gene Regulation] (Journal of Biological Chemistry)

 
 

7 january 2019 09:00:21

 
Computational approaches for the analysis of RNA-protein interactions: A primer for biologists [Gene Regulation] (Journal of Biological Chemistry)
 




RNA-binding proteins (RBPs) play important roles in the control of gene expression and the coordination of different layers of post-transcriptional regulation. Interactions between certain RBPs and mRNA transcripts are notoriously difficult to predict, as any given protein-RNA interaction may rely not only on RNA sequence, but also on three-dimensional RNA structures, competitive inhibition from other RBPs, and input from cellular signaling pathways. Advanced and high-throughput technologies for the identification of RNA-protein interactions have come to the rescue, but the identification of binding sites and downstream functional effects of RBPs from the resulting data can be challenging. In this review, we discuss statistical inference and machine-learning approaches and tools relevant for the study of RBPs and the analysis of large-scale RNA-protein interaction datasets. This primer is intended for life scientists who are interested in incorporating these tools into their own research. We begin with the demystification of regression models, as used in the analysis of next-generation sequencing data, and progress to a discussion of Hidden Markov Models, which are of particular value in analyzing cross-linking followed by immunoprecipitation data. We then continue with examples of machine learning techniques, such as support vector machines and gradient tree boosting. We close with a brief discussion of current trends in the field, including deep learning architectures.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
24 viewsCategory: Biochemistry
 
Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner (Nature Chemical Biology)
ROR{gamma} regulates the NLRP3 inflammasome [Signal Transduction] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn