MyJournals Home  

RSS FeedsMarine Drugs, Vol. 17, Pages 50: Marine Bacterial Polysaccharide EPS11 Inhibits Cancer Cell Growth and Metastasis via Blocking Cell Adhesion and Attenuating Filiform Structure Formation (Marine Drugs)

 
 

12 january 2019 00:00:02

 
Marine Drugs, Vol. 17, Pages 50: Marine Bacterial Polysaccharide EPS11 Inhibits Cancer Cell Growth and Metastasis via Blocking Cell Adhesion and Attenuating Filiform Structure Formation (Marine Drugs)
 




Our previous results suggested that EPS11, a novel marine bacterial polysaccharide, might be a potential drug candidate for human non-small cell lung carcinoma treatment. In this study, we further investigate the anticancer mechanisms against liver cancer and the anti-metastatic effects in vivo of EPS11. Firstly, we found that EPS11 exerts cytotoxic effects via blocking cell adhesion and destroying filiform structure formation in Huh7.5 cells. Moreover, mass spectrometry-based proteomic analysis of EPS11-treated Huh7.5 cells revealed that expression of many adhesion-related proteins was significantly changed. It is noteworthy that the expression of CD99, a key factor related to cell adhesion, migration and cell death, is remarkably down-regulated after EPS11 treatment. Importantly, over-expression of CD99 partly rescues cell death rate, and improves cell adhesion and migration ability in Huh7.5 treated by EPS11. Thus, we propose that CD99 is a potential action target of EPS11, inhibiting cancer cell proliferation, adhesion and migration. Notably, administration of EPS11 simultaneously with tumor induction evidently reduces tumor nodule formation in the lungs, which strongly indicates that EPS11 has anti-metastatic effects in vivo. Taken together, our results suggest that EPS11 inhibits liver cancer cell growth via blocking cell adhesion and attenuating filiform structure formation, and has potential as an anti-cancer drug, targeting metastasis of cancer cells, in the future.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
47 viewsCategory: Biochemistry, Molecular Biology, Pharmacology
 
Marine Drugs, Vol. 17, Pages 52: Structure Analysis and Anti-Tumor and Anti-Angiogenic Activities of Sulfated Galactofucan Extracted from Sargassum thunbergii (Marine Drugs)
Marine Drugs, Vol. 17, Pages 51: The Effect of Polydeoxyribonucleotide Extracted from Salmon Sperm on the Restoration of Bisphosphonate-Related Osteonecrosis of the Jaw (Marine Drugs)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn