MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 146: A Novel FPGA-Based Architecture for Fast Automatic Target Detection in Hyperspectral Images (Remote Sensing)

 
 

14 january 2019 16:00:09

 
Remote Sensing, Vol. 11, Pages 146: A Novel FPGA-Based Architecture for Fast Automatic Target Detection in Hyperspectral Images (Remote Sensing)
 




Onboard target detection of hyperspectral imagery (HSI), considered as a significant remote sensing application, has gained increasing attention in the latest years. It usually requires processing huge volumes of HSI data in real-time under constraints of low computational complexity and high detection accuracy. Automatic target generation process based on an orthogonal subspace projector (ATGP-OSP) is a well-known automatic target detection algorithm, which is widely used owing to its competitive performance. However, ATGP-OSP has an issue to be deployed onboard in real-time target detection due to its iteratively calculating the inversion of growing matrices and increasing matrix multiplications. To resolve this dilemma, we propose a novel fast implementation of ATGP (Fast-ATGP) while maintaining target detection accuracy of ATGP-OSP. Fast-ATGP takes advantage of simple regular matrix add/multiply operations instead of increasingly complicated matrix inversions to update growing orthogonal projection operator matrices. Furthermore, the updated orthogonal projection operator matrix is replaced by a normalized vector to perform the inner-product operations with each pixel for finding a target per iteration. With these two major optimizations, the computational complexity of ATGP-OSP is substantially reduced. What is more, an FPGA-based implementation of the proposed Fast-ATGP using high-level synthesis (HLS) is developed. Specifically, an efficient architecture containing a bunch of pipelines being executed in parallel is further designed and evaluated on a Xilinx XC7VX690T FPGA. The experimental results demonstrate that our proposed FPGA-based Fast-ATGP is able to automatically detect multiple targets on a commonly used dataset (AVIRIS Cuprite Data) at a high-speed rate of 200 MHz with a significant speedup of nearly 34.3 times that of ATGP-OSP, while retaining nearly the same high detection accuracy.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
168 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 147: A Structural Classification of Australian Vegetation Using ICESat/GLAS, ALOS PALSAR, and Landsat Sensor Data (Remote Sensing)
Remote Sensing, Vol. 11, Pages 144: High-Resolution Mass Trends of the Antarctic Ice Sheet through a Spectral Combination of Satellite Gravimetry and Radar Altimetry Observations (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn