MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 383: Oxazole-Bridged Combretastatin A-4 Derivatives with Tethered Hydroxamic Acids: Structure-Activity Relations of New Inhibitors of HDAC and/or Tubulin Function (International Journal of Molecular Sciences)

 
 

18 january 2019 10:01:56

 
IJMS, Vol. 20, Pages 383: Oxazole-Bridged Combretastatin A-4 Derivatives with Tethered Hydroxamic Acids: Structure-Activity Relations of New Inhibitors of HDAC and/or Tubulin Function (International Journal of Molecular Sciences)
 




New inhibitors of tubulin polymerization and/or histone deacetylase (HDAC) activity were synthesized by attaching alkyl tethered hydroxamic acid appendages of varying length to oxazole-bridged combretastatin A-4 analogous caps. While their antiproliferative and microtubule disrupting effect was most pronounced for derivatives with short spacers, HDAC inhibition was strongest for those with longer spacers. These findings were further supported by computational methods such as structure-based docking experiments exploring the target interactions of the derivatives with varying linkers. For instance, compounds featuring short four-atom spacers between cap and hydroxamic acid inhibited the growth of various cancer cell lines and human endothelial hybrid cells with IC50 values in the low nanomolar range. In line with their ability to inhibit the microtubule assembly, four- and five-atom spacered hydroxamic acids caused an accumulation of 518A2 melanoma cells in G2/M phase, whereas a compound featuring a six-atom spacer and performing best in HDAC inhibition, induced a G1 arrest in these cells. All these beneficial anticancer activities together with their selectivity for cancer cells over non-malignant cells, point out the great potential of these novel pleiotropic HDAC and tubulin inhibitors as drug candidates for cancer therapy.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
23 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 386: Network-Based Assessment of Adverse Drug Reaction Risk in Polypharmacy Using High-Throughput Screening Data (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 385: Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D3 (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn