MyJournals Home  

RSS FeedsHerpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles [Cell Biology] (Journal of Biological Chemistry)

 
 

18 january 2019 15:00:07

 
Herpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles [Cell Biology] (Journal of Biological Chemistry)
 


Receptor-interacting protein (RIP) kinase 3 (RIPK3)-dependent necroptosis directs inflammation and tissue injury, as well as anti-viral host defense. In human cells, herpes simplex virus 1 (HSV1) UL39-encoded ICP6 blocks RIP homotypic interacting motif (RHIM) signal transduction, preventing this leakage form of cell death and sustaining viral infection. TNF receptor 1 (TNFR1)-induced necroptosis is known to require the formation of a RIPK1-RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL) signaling complex (necrosome) that we find compartmentalizes exclusively to caveolin-1-associated detergent-resistant membrane (DRM) vesicles in HT-29 cells. Translocation proceeds in the presence of RIPK3 kinase inhibitor GSK´840 or MLKL inhibitor necrosulfonomide but requires the kinase activity, as well as RHIM signaling of RIPK1. ICP6 impedes the translocation of RIPK1, RIPK3, and MLKL to caveolin-1-containing DRM vesicles without fully blocking the activation of RIPK3 or phosphorylation of MLKL. Consistent with the important contribution of RIPK1 RHIM-dependent recruitment of RIPK3, overexpression of RHIM-deficient RIPK3 results in phosphorylation of MLKL, but this does not lead to either translocation or necroptosis. Combined, these data reveal a critical role of RHIM signaling in the recruitment of the MLKL-containing necrosome to membrane vesicle-associated sites of aggregation. A similar mechanism is predicted for other RHIM-containing signaling adaptors, Z-nucleic acid-binding protein 1 (ZBP1) (also called DAI and DLM1), and TIR domain-containing adapter-inducing interferon-? (TRIF).


 
115 viewsCategory: Biochemistry
 
The bacterial lipid II flippase MurJ functions by an alternating-access mechanism [Microbiology] (Journal of Biological Chemistry)
Elevated histone H3 acetylation and loss of the Sp1-HDAC1 complex de-repress the GM2-synthase gene in renal cell carcinoma [Gene Regulation] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten