MyJournals Home  

RSS FeedsKinetic and catalytic properties of M.HpyAXVII, a phase-variable DNA methyltransferase from Helicobacter pylori [DNA and Chromosomes] (Journal of Biological Chemistry)

 
 

18 january 2019 15:00:07

 
Kinetic and catalytic properties of M.HpyAXVII, a phase-variable DNA methyltransferase from Helicobacter pylori [DNA and Chromosomes] (Journal of Biological Chemistry)
 


The bacterium Helicobacter pylori is one of the most common infectious agents found in the human stomach. H. pylori has an unusually large number of DNA methyltransferases (MTases), prompting speculation that they may be involved in the cancerization of epithelial cells. The mod-4a/4b locus, consisting of the hp1369 and hp1370 ORFs, encodes for a truncated and inactive MTase in H. pylori strain 26695. However, slipped-strand synthesis within the phase-variable polyguanine tract in hp1369 results in expression of an active HP1369-1370 fusion N6-adenine methyltransferase, designated M.HpyAXVII. Sequence analysis of the mod-4a/4b locus across 74 H. pylori strain genomes has provided insights into the regulation of M.HpyAXVII expression. To better understand the role of M.HpyAXVII in the H. pylori biology, here we cloned and overexpressed the hp1369-70 fusion construct in Escherichia coli BL21(DE3) cells. Results from size-exclusion chromatography and multi-angle light scattering (MALS) analyses suggested that M.HpyAXVII exists as a dimer in solution. Kinetic studies, including product and substrate inhibition analyses, initial velocity dependence between substrates, and isotope partitioning, suggested that M.HpyAXVII catalyzes DNA methylation in an ordered Bi Bi mechanism in which the AdoMet binding precedes DNA binding and AdoMet`s methyl group is then transferred to an adenine within the DNA recognition sequence. Altering the highly conserved catalytic motif (DPP(Y/F)) as well as the AdoMet-binding motif (FXGXG) by site-directed mutagenesis abolished the catalytic activity of M.HpyAXVII. These results provide insights into the enzyme kinetic mechanism of M.HpyAXVII. We propose that AdoMet binding conformationally `primes` the enzyme for DNA binding.


 
88 viewsCategory: Biochemistry
 
Elevated histone H3 acetylation and loss of the Sp1-HDAC1 complex de-repress the GM2-synthase gene in renal cell carcinoma [Gene Regulation] (Journal of Biological Chemistry)
A cysteine protease-like domain enhances the cytotoxic effects of the Photorhabdus asymbiotica toxin PaTox [Cell Biology] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten