MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 157: Approximating Empirical Surface Reflectance Data through Emulation: Opportunities for Synthetic Scene Generation (Remote Sensing)

 
 

20 january 2019 05:00:02

 
Remote Sensing, Vol. 11, Pages 157: Approximating Empirical Surface Reflectance Data through Emulation: Opportunities for Synthetic Scene Generation (Remote Sensing)
 


Collection of spectroradiometric measurements with associated biophysical variables is an essential part of the development and validation of optical remote sensing vegetation products. However, their quality can only be assessed in the subsequent analysis, and often there is a need for collecting extra data, e.g., to fill in gaps. To generate empirical-like surface reflectance data of vegetated surfaces, we propose to exploit emulation, i.e., reconstruction of spectral measurements through statistical learning. We evaluated emulation against classical interpolation methods using an empirical field dataset with associated hyperspectral spaceborne CHRIS and airborne HyMap reflectance spectra, to produce synthetic CHRIS and HyMap reflectance spectra for any combination of input biophysical variables. Results indicate that: (1) emulation produces surface reflectance data more accurately than interpolation when validating against a separate part of the field dataset; and (2) emulation produces the spectra multiple times (tens to hundreds) faster than interpolation. This technique opens various data processing opportunities, e.g., emulators not only allow rapidly producing large synthetic spectral datasets, but they can also speed up computationally intensive processing routines such as synthetic scene generation. To demonstrate this, emulators were run to simulate hyperspectral imagery based on input maps of a few biophysical variables coming from CHRIS, HyMap and Sentinel-2 (S2). The emulators produced spaceborne CHRIS-like and airborne HyMap-like surface reflectance imagery in the order of seconds, thereby approximating the spectra of vegetated surfaces sufficiently similar to the reference images. Similarly, it took a few minutes to produce a hyperspectral data cube with a spatial texture of S2 and a spectral resolution of HyMap.


 
106 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 158: A Multisensor Approach to Satellite Monitoring of Trends in Lake Area, Water Level, and Volume (Remote Sensing)
Remote Sensing, Vol. 11, Pages 156: Synthesis of Vegetation Indices Using Genetic Programming for Soil Erosion Estimation (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten