MyJournals Home  

RSS FeedsMarine Drugs, Vol. 17, Pages 64: Protective Effect of Low Molecular Weight Seleno-Aminopolysaccharide on the Intestinal Mucosal Oxidative Damage (Marine Drugs)

 
 

21 january 2019 07:00:02

 
Marine Drugs, Vol. 17, Pages 64: Protective Effect of Low Molecular Weight Seleno-Aminopolysaccharide on the Intestinal Mucosal Oxidative Damage (Marine Drugs)
 


Low molecular weight seleno-aminopolysaccharide (LSA) is an organic selenium compound comprising selenium and low molecular weight aminopolysaccharide (LA), a low molecular weight natural linear polysaccharide derived from chitosan. LSA has been found to exert strong pharmacological activity. In this study, we aimed to investigate the protective effect of LSA on intestinal mucosal oxidative stress in a weaning piglet model by detecting the growth performance, intestinal mucosal structure, antioxidant indices, and expression level of intracellular transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its related factors. Our results indicated that LSA significantly increased the average daily gain and feed/gain (p < 0.05), suggesting that LSA can effectively promote the growth of weaning piglets. The results of scanning electron microscope (SEM) microscopy showed that LSA effectively reduced intestinal damage, indicating that LSA improved the intestinal stress response and protected the intestinal structure integrity. In addition, diamine oxidase (DAO) and d-lactic acid (d-LA) levels remarkably decreased in LSA group compared with control group (p < 0.05), suggesting that LSA alleviated the damage and permeability of weaning piglets. LSA significantly increased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels, but decreased malondialdehyde (MDA) level, indicating that LSA significantly enhanced the antioxidant capacity and reduced oxidative stress in weaning piglets. RT-PCR results showed that LSA significantly increased GSH-Px1, GSH-Px2, SOD-1, SOD-2, CAT, Nrf2, HO-1, and NQO1 gene expression (p < 0.05). Western blot analysis revealed that LSA activated the Nrf2 signaling pathway by downregulating the expression of Keap1 and upregulating the expression of Nrf2 to protect intestinal mucosa against oxidative stress. Collectively, LSA reduced intestinal mucosal damage induced by oxidative stress via Nrf2-Keap1 pathway in weaning stress of infants.


 
94 viewsCategory: Biochemistry, Molecular Biology, Pharmacology
 
Marine Drugs, Vol. 17, Pages 65: Microcarriers Based on Glycosaminoglycan-Like Marine Exopolysaccharide for TGF-?1 Long-Term Protection (Marine Drugs)
Marine Drugs, Vol. 17, Pages 63: Tetracenomycin X Exerts Antitumour Activity in Lung Cancer Cells through the Downregulation of Cyclin D1 (Marine Drugs)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten