MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 364: Highly Efficient Synthesis of Substituted 3,4-Dihydropyrimidin-2-(1H)-ones (DHPMs) Catalyzed by Hf(OTf)4: Mechanistic Insights into Reaction Pathways under Metal Lewis Acid Catalysis and Solvent-Free Conditions (Molecules)

 
 

21 january 2019 15:00:03

 
Molecules, Vol. 24, Pages 364: Highly Efficient Synthesis of Substituted 3,4-Dihydropyrimidin-2-(1H)-ones (DHPMs) Catalyzed by Hf(OTf)4: Mechanistic Insights into Reaction Pathways under Metal Lewis Acid Catalysis and Solvent-Free Conditions (Molecules)
 


In our studies on the catalytic activity of Group IVB transition metal Lewis acids, Hf(OTf)4 was identified as a highly potent catalyst for ”one-pot, three-component” Biginelli reaction. More importantly, it was found that solvent-free conditions, in contrast to solvent-based conditions, could dramatically promote the Hf(OTf)4-catalyzed formation of 3,4-dihydro-pyrimidin-2-(1H)-ones. To provide a mechanistic explanation, we closely examined the catalytic effects of Hf(OTf)4 on all three potential reaction pathways in both “sequential bimolecular condensations” and “one-pot, three-component” manners. The experimental results showed that the synergistic effects of solvent-free conditions and Hf(OTf)4 catalysis not only drastically accelerate Biginelli reaction by enhancing the imine route and activating the enamine route but also avoid the formation of Knoevenagel adduct, which may lead to an undesired byproduct. In addition, 1H-MMR tracing of the H-D exchange reaction of methyl acetoacetate in MeOH-d4 indicated that Hf(IV) cation may significantly accelerate ketone-enol tautomerization and activate the β-ketone moiety, thereby contributing to the overall reaction rate.


 
85 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 366: Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases (Molecules)
Molecules, Vol. 24, Pages 363: Compounding MgCl2·6H2O with NH4Al(SO4)2·12H2O or KAl(SO4)2·12H2O to Obtain Binary Hydrated Salts as High-Performance Phase Change Materials (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten