MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 206: Optimization of Sensitivity of GOES-16 ABI Sea Surface Temperature by Matching Satellite Observations with L4 Analysis (Remote Sensing)

 
 

21 january 2019 16:00:04

 
Remote Sensing, Vol. 11, Pages 206: Optimization of Sensitivity of GOES-16 ABI Sea Surface Temperature by Matching Satellite Observations with L4 Analysis (Remote Sensing)
 




Monitoring of the diurnal warming cycle in sea surface temperature (SST) is one of the key tasks of the new generation geostationary sensors, the Geostationary Operational Environmental Satellite (GOES)-16/17 Advanced Baseline Imager (ABI), and the Himawari-8/9 Advanced Himawari Imager (AHI). However, such monitoring requires modifications of the conventional SST retrieval algorithms. In order to closely reproduce temporal and spatial variations in SST, the sensitivity of retrieved SST to SSTskin should be as close to 1 as possible. Regression algorithms trained by matching satellite observations with in situ SST from drifting and moored buoys do not meet this requirement. Since the geostationary sensors observe tropical regions over larger domains and under more favorable conditions than mid-to-high latitudes, the matchups are predominantly concentrated within a narrow range of in situ SSTs >2 85 K. As a result, the algorithms trained against in situ SST provide the sensitivity to SSTskin as low as ~0.7 on average. An alternative training method, employed in the National Oceanic and Atmospheric Administration (NOAA) Advanced Clear-Sky Processor for Oceans, matches nighttime satellite clear-sky observations with the analysis L4 SST, interpolated to the sensor’s pixels. The method takes advantage of the total number of clear-sky pixels being large even at high latitudes. The operational use of this training method for ABI and AHI has increased the mean sensitivity of the global regression SST to ~0.9 without increasing regional biases. As a further development towards improved SSTskin retrieval, the piecewise regression SST algorithm was developed, which provides optimal sensitivity in every SST pixel. The paper describes the global and the piecewise regression algorithms trained against analysis SST and illustrates their performance with SST retrievals from the GOES-16 ABI.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
40 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 207: Cropland Mapping Using Fusion of Multi-Sensor Data in a Complex Urban/Peri-Urban Area (Remote Sensing)
Remote Sensing, Vol. 11, Pages 205: Improvement and Validation of NASA/MODIS NRT Global Flood Mapping (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn