MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 203: Validation of OMI HCHO Products Using MAX-DOAS observations from 2010 to 2016 in Xianghe, Beijing: Investigation of the Effects of Aerosols on Satellite Products (Remote Sensing)

 
 

21 january 2019 16:00:04

 
Remote Sensing, Vol. 11, Pages 203: Validation of OMI HCHO Products Using MAX-DOAS observations from 2010 to 2016 in Xianghe, Beijing: Investigation of the Effects of Aerosols on Satellite Products (Remote Sensing)
 


Formaldehyde (HCHO) is one of the most abundant hydrocarbons in the atmosphere. Its absorption features in the 320–360 nm range allow its concentration in the atmosphere to be retrieved from space. There are two versions of HCHO datasets derived from the Ozone Monitoring Instrument (OMI)—one provided by the Royal Belgian Institute for Space Aeronomy (BIRA-IASB) and one provided by the National Aeronautics and Space Administration (NASA)—referred to as OMI-BIRA and OMI-NASA, respectively. We conducted daily comparisons of OMI-BIRA and multi-axis differential optical absorption spectrometry (MAX-DOAS), OMI-NASA and MAX-DOAS, and OMI-BIRA and OMI-NASA and monthly comparisons of OMI-BIRA and MAX-DOAS and OMI-NASA and MAX-DOAS. Daily comparisons showed a strong impact of effective cloud fraction (eCF), and correlations were better for eCF < 0.1 than for eCF < 0.3. By contrast, the monthly and multi-year monthly mean values yielded correlations of R2 = 0.60 and R2 = 0.95, respectively, for OMI-BIRA and MAX-DOAS, and R2 = 0.45 and R2 = 0.78 for OMI-NASA and MAX-DOAS, respectively. Therefore, use of the monthly mean HCHO datasets is strongly recommended. We conducted a sensitivity test for HCHO air mass factor (AMF) calculations with respect to the HCHO profile, the aerosol extinction coefficient (AEC), the HCHO profile–AEC combination, the aerosol optical depth (AOD), and the single scattering albedo (SSA) to explicitly account for the aerosol optical effects on the HCHO AMF. We found that the combination of AEC and HCHO profiles can account for 23–39% of the HCHO AMF variation. Furthermore, a high load of absorptive aerosols can exert a considerable effect (−53%) on the AMF. Finally, we used the HCHO monthly mean profiles from Goddard Earth Observing System coupled to Chemistry (GEOS-Chem), seasonal mean AECs from Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP) and monthly climatologies of AOD and SSA from the OMAERUV (OMI level-2 near UV aerosol data product) dataset at Xianghe station to determine the aerosol correction. The results reveal that aerosols can account for +6.37% to +20.7% of the HCHO monthly change. However, the changes are greatest in winter and are weaker in summer and autumn, indicating that the aerosol correction is more applicable under high-AAOD conditions and that there may be other reasons for the significant underestimation between satellite and MAX-DOAS observations.


 
91 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 204: A Self-Calibrated Non-Parametric Time Series Analysis Approach for Assessing Insect Defoliation of Broad-Leaved Deciduous Nothofagus pumilio Forests (Remote Sensing)
Remote Sensing, Vol. 11, Pages 237: A New Method for Large-Scale Landslide Classification from Satellite Radar (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten