MyJournals Home  

RSS FeedsEnergies, Vol. 12, Pages 540: Numerical Comparison of Thermohydraulic Performance and Fluid-Induced Vibrations for STHXs with Segmental, Helical, and Novel Clamping Antivibration Baffles (Energies)

 
 

9 february 2019 23:00:38

 
Energies, Vol. 12, Pages 540: Numerical Comparison of Thermohydraulic Performance and Fluid-Induced Vibrations for STHXs with Segmental, Helical, and Novel Clamping Antivibration Baffles (Energies)
 


The most extensively used heat exchanger in numerous research fields and industrial processes is the shell and tube heat exchanger. The selection of the baffle plays a vital role to regulate and increase the thermohydraulic performance and also to decrease fluid-induced vibrations due to shell side flow. 3-D computational fluid dynamics (CFD) and fluid-structure interaction (FSI) have been done to analyze the pressure drop, heat transfer coefficient, vortex shedding, and tube deformation due to induced vibrations among the recently developed clamping antivibration baffles with square twisted tubes, helical baffles with cylindrical tubes, and conventional segmental baffles with cylindrical tubes at different shell side flow rates by using commercial software ANSYS. Complete heat exchangers are modeled for numerical comparison; the thermohydraulic performance of the numerical model shows the suitable agreement by validating it with already published results and Esso method for single segmental baffles. It is then used to compare the performance of the same heat exchangers with CBSTT and HBCT. Thermohydraulic performance of CBSTT-STHX is better than SGCT-STHX. The heat transfer coefficient of heat exchangers with tube-to-baffle-hole clearance is higher and there is a reduction in the pressure drop compared to the results of STHXs without tube-to-baffle-hole clearance. The deformation in the tubes and vortex-induced vibrations are minimum in STHX with CBSTT than in STHXs with HBCT and SGCT.


 
149 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 12, Pages 541: Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids (Energies)
Energies, Vol. 12, Pages 546: Effects of Producer and Transmission Reliability on the Sustainability Assessment of Power System Networks (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten