MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 386: Spatiotemporal Filtering and Noise Analysis for Regional GNSS Network in Antarctica Using Independent Component Analysis (Remote Sensing)

 
 

14 february 2019 13:00:08

 
Remote Sensing, Vol. 11, Pages 386: Spatiotemporal Filtering and Noise Analysis for Regional GNSS Network in Antarctica Using Independent Component Analysis (Remote Sensing)
 


The common mode error (CME) and optimal noise model are the two most important factors affecting the accuracy of time series in regional Global Navigation Satellite System (GNSS) networks. Removing the CME and selecting the optimal noise model can effectively improve the accuracy of GNSS coordinate time series. The CME, a major source of error, is related to the spatiotemporal distribution; hence, its detrimental effects on time series can be effectively reduced through spatial filtering. Independent component analysis (ICA) is used to filter the time series recorded by 79 GPS stations in Antarctica from 2010 to 2018. After removing stations exhibiting strong local effects using their spatial responses, the filtering results of residual time series derived from principal component analysis (PCA) and ICA are compared and analyzed. The Akaike information criterion (AIC) is then used to determine the optimal noise model of the GPS time series before and after ICA/PCA filtering. The results show that ICA is superior to PCA regarding both the filter results and the consistency of the optimal noise model. In terms of the filtering results, ICA can extract multisource error signals. After ICA filtering, the root mean square (RMS) values of the residual time series are reduced by 14.45%, 8.97%, and 13.27% in the east (E), north (N), and vertical (U) components, respectively, and the associated speed uncertainties are reduced by 13.50%, 8.06% and 11.82%, respectively. Furthermore, different GNSS time series in Antarctica have different optimal noise models with different noise characteristics in different components. The main noise models are the white noise plus flicker noise (WN+FN) and white noise plus power law noise (WN+PN) models. Additionally, the spectrum index of most PN is close to that of FN. Finally, there are more stations with consistent optimal noise models after ICA filtering than there are after PCA filtering.


 
81 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 387: Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages (Remote Sensing)
Remote Sensing, Vol. 11, Pages 385: Statistical Properties of an Unassisted Image Quality Index for SAR Imagery (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten