MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 747: Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring (Sensors)

 
 

15 february 2019 17:00:03

 
Sensors, Vol. 19, Pages 747: Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring (Sensors)
 




Unmanned aerial vehicle (UAV)-based multispectral sensors have great potential in crop monitoring due to their high flexibility, high spatial resolution, and ease of operation. Image preprocessing, however, is a prerequisite to make full use of the acquired high-quality data in practical applications. Most crop monitoring studies have focused on specific procedures or applications, and there has been little attempt to examine the accuracy of the data preprocessing steps. This study focuses on the preprocessing process of a six-band multispectral camera (Mini-MCA6) mounted on UAVs. First, we have quantified and analyzed the components of sensor error, including noise, vignetting, and lens distortion. Next, different methods of spectral band registration and radiometric correction were evaluated. Then, an appropriate image preprocessing process was proposed. Finally, the applicability and potential for crop monitoring were assessed in terms of accuracy by measurement of the leaf area index (LAI) and the leaf biomass inversion under variable growth conditions during five critical growth stages of winter wheat. The results show that noise and vignetting could be effectively removed via use of correction coefficients in image processing. The widely used Brown model was suitable for lens distortion correction of a Mini-MCA6. Band registration based on ground control points (GCPs) (Root-Mean-Square Error, RMSE = 1.02 pixels) was superior to that using PixelWrench2 (PW2) software (RMSE = 1.82 pixels). For radiometric correction, the accuracy of the empirical linear correction (ELC) method was significantly higher than that of light intensity sensor correction (ILSC) method. The multispectral images that were processed using optimal correction methods were demonstrated to be reliable for estimating LAI and leaf biomass. This study provides a feasible and semi-automatic image preprocessing process for a UAV-based Mini-MCA6, which also serves as a reference for other array-type multispectral sensors. Moreover, the high-quality data generated in this study may stimulate increased interest in remote high-efficiency monitoring of crop growth status.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
30 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 748: Enhanced Auditory Steady-State Response Using an Optimized Chirp Stimulus-Evoked Paradigm (Sensors)
Sensors, Vol. 19, Pages 746: Three-Dimensional Visualization System with Spatial Information for Navigation of Tele-Operated Robots (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn