MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 875: IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling (International Journal of Molecular Sciences)

 
 

19 february 2019 03:03:37

 
IJMS, Vol. 20, Pages 875: IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling (International Journal of Molecular Sciences)
 


The patho-mechanism leading to airway wall remodeling in allergic asthma is not well understood and remodeling is resistant to therapies. This study assessed the effect of immunoglobulin E (IgE) in the absence of allergens on human primary airway smooth muscle cell (ASMC) remodeling in vitro. ASMCs were obtained from five allergic asthma patients and five controls. Proliferation was determined by direct cell counts, mitochondrial activity by expression of cytochrome c, protein expression by immunoblotting and immuno-fluorescence, cell migration by microscopy imaging, and collagen deposition by cell based ELISA and RNA expression by real time PCR. Non-immune IgE activated two signaling pathways: (i) signal transducer and activator of transcription 3 (STAT3)→miR-21-5p→downregulating phosphatase and tensin homolog (PTEN) expression, and (ii) phosphatidylinositol 3-kinases (PI3K)→protein kinase B (Akt)→mammalian target of rapamycin (mTOR)→ribosomal protein S6 kinase beta-1 (p70s6k)→peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1-α)→peroxisome proliferator-activated receptor-γ (PPAR-γ)→cyclooxygenase-2 (COX-2)→mitochondrial activity, proliferation, migration, and extracellular matrix deposition. Reduced PTEN expression correlated with enhanced PI3K signaling, which upregulated ASMC remodeling. The inhibition of microRNA-21-5p increased PTEN and reduced mTOR signaling and remodeling. Mimics of microRNA-21-5p had opposing effects. IgE induced ASMC remodeling was significantly reduced by inhibition of mTOR or STAT3. In conclusion, non-immune IgE alone is sufficient for stimulated ASMC remodeling by upregulating microRNA-21-5p. Our findings suggest that the suppression of micoRNA-21-5p may present a therapeutic target to reduce airway wall remodeling.


 
63 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 877: Insight into Structural Characteristics of Protein-Substrate Interaction in Pimaricin Thioesterase (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 876: Involvement of Actin Cytoskeletal Components in Breast Cancer Cell Fusion with Human Mesenchymal Stroma/Stem-Like Cells (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten