MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 862: A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance (Sensors)

 
 

19 february 2019 13:03:13

 
Sensors, Vol. 19, Pages 862: A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance (Sensors)
 


Localized Surface Plasmon Resonance (LSPR) sensors have potential applications in essential and important areas such as bio-sensor technology, especially in medical applications and gas sensors in environmental monitoring applications. Figure of Merit (FOM) and Sensitivity (S) measurements are two ways to assess the performance of an LSPR sensor. However, LSPR sensors suffer low FOM compared to the conventional Surface Plasmon Resonance (SPR) sensor due to high losses resulting from radiative damping of LSPs waves. Different methodologies have been utilized to enhance the performance of LSPR sensors, including various geometrical and material parameters, plasmonic wave coupling from different structures, and integration of noble metals with graphene, which is the focus of this report. Recent studies of metal-graphene hybrid plasmonic systems have shown its capability of promoting the performance of the LSPR sensor to a level that enhances its chance for commercialization. In this review, fundamental physics, the operation principle, and performance assessment of the LSPR sensor are presented followed by a discussion of plasmonic materials and a description of methods used to optimize the sensor’s performance. A focused review on metal-graphene hybrid nanostructure and a discussion of its role in promoting the performance of the LSPR sensor follow.


 
82 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 863: Acoustic Field Characterization of Medical Array Transducers Based on Unfocused Transmits and Single-Plane Hydrophone Measurements (Sensors)
Sensors, Vol. 19, Pages 861: An LSTM-Based Method with Attention Mechanism for Travel Time Prediction (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten