MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 792: Increased Selectivity of Novozym 435 in the Asymmetric Hydrolysis of a Substrate with High Hydrophobicity Through the Use of Deep Eutectic Solvents and High Substrate Concentrations (Molecules)

 
 

22 february 2019 10:01:51

 
Molecules, Vol. 24, Pages 792: Increased Selectivity of Novozym 435 in the Asymmetric Hydrolysis of a Substrate with High Hydrophobicity Through the Use of Deep Eutectic Solvents and High Substrate Concentrations (Molecules)
 


The effects of the reaction medium and substrate concentration were studied on the selectivity of Novozym 435 using the asymmetric hydrolysis of dimethyl-3-phenylglutarate as a model reaction. Results show that the use of choline chloride ChCl:urea/phosphate buffer 50% (v/v) as a reaction medium increased the selectivity of Novozym 435 by 16% (e.e = 88%) with respect to the one in 100% phosphate buffer (e.e = 76%). Best results were obtained when high substrate concentrations (well above the solubility limit, 27-fold) and ChCl:urea/phosphate buffer 50% (v/v) as reaction medium at pH 7 and 30 °C were used. Under such conditions, the R-monoester was produced with an enantiomeric purity of 99%. Novozym 435 was more stable in ChCl:urea/phosphate buffer 50% (v/v) than in phosphate buffer, retaining a 50% of its initial activity after 27 h of incubation at pH 7 and 40 °C. Results suggest that the use of deep eutectic solvents (ChCl:urea/phosphate buffer) in an heterogeneous reaction system (high substrate concentration) is a viable and promising strategy for the synthesis of chiral drugs from highly hydrophobic substrates.


 
66 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 787: Effects of Epigallocatechin Gallate on the Stability of Epicatechin in a Photolytic Process (Molecules)
Molecules, Vol. 24, Pages 791: Synthetic Chiral Derivatives of Xanthones: Biological Activities and Enantioselectivity Studies (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten