MyJournals Home  

RSS FeedsSustainability, Vol. 11, Pages 1562: A Novel Expertise-Guided Machine Learning Model for Internal Fault State Diagnosis of Power Transformers (Sustainability)


14 march 2019 14:02:22

Sustainability, Vol. 11, Pages 1562: A Novel Expertise-Guided Machine Learning Model for Internal Fault State Diagnosis of Power Transformers (Sustainability)

The fault diagnosis of power transformers is of great significance to improve the reliability of power systems. This paper proposes a novel fault diagnosis method called the expertise-guided machine learning (EGML) model where a genetic algorithm (GA) and a mind evolutionary algorithm (MEA) are used as optimization algorithms. Thereby, two types of EGML models are generated, that is, the GA-EGML model and the MEA-EGML model. In the EGML model, knowledge function replaces the cost function of traditional artificial intelligence algorithms, which can provide additional information for each individual and bring some corrections to the prediction results. To investigate the application potentials of the proposed models in power transformer fault diagnosis, real dissolved gases data are utilized to evaluate the diagnosis performance of the proposed models. Results indicate that the performance of the EGML model outperforms the traditional back propagation neural network (BPNN) model and all other models participating in the comparison. Both the GA-EGML model and MEA-EGML model can be used to diagnose the faults of a power transformer, and the latter is better. In addition, to further investigate the robustness of the proposed models for different data, four scenarios are simulated. Empirical results show that the accuracies of all models decrease in the other three scenarios compared to the baseline scenario, especially in scenario 2. However, the proposed models decline less than the traditional models in scenario 2 and scenario 4, and obtain satisfactory accuracy in all scenarios. Digg Facebook Google StumbleUpon Twitter
23 viewsCategory: Ecology
Sustainability, Vol. 11, Pages 1540: Landscape Assessment for Stream Regulation Works in a Watershed Using the Analytic Network Process (ANP) (Sustainability)
Sustainability, Vol. 11, Pages 1561: What Dimension of CSR Matters to Organizational Resilience? Evidence from China (Sustainability)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn