MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 628: Comparing Multiple Precipitation Products against In-Situ Observations over Different Climate Regions of Pakistan (Remote Sensing)

 
 

14 march 2019 17:00:11

 
Remote Sensing, Vol. 11, Pages 628: Comparing Multiple Precipitation Products against In-Situ Observations over Different Climate Regions of Pakistan (Remote Sensing)
 




Various state-of-the-art gridded satellite precipitation products (GPPs) have been derived from remote sensing and reanalysis data and are widely used in hydrological studies. An assessment of these GPPs against in-situ observations is necessary to determine their respective strengths and uncertainties. GPPs developed from satellite observations as a primary source were compared to in-situ observations, namely the Climate Hazard group Infrared Precipitation with Stations (CHIRPS), Multi-Source Weighted-Ensemble Precipitation (MSWEP), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA). These products were compared to in-situ data from 51 stations, spanning 1998–2016, across Pakistan on daily, monthly, annual and interannual time scales. Spatiotemporal climatology was well captured by all products, with more precipitation in the north eastern parts during the monsoon months and vice-versa. Daily precipitation with amount larger than 10 mm showed significant (95%, Kolmogorov-Smirnov test) agreement with the in-situ data, especially TMPA, followed by CHIRPS and MSWEP. At monthly scales, there were significant correlations (R) between the GPPs and in-situ records, suggesting similar dynamics; however, statistical metrics suggested that the performance of these products varies from north towards south. Temporal agreement on an interannual scale was higher in the central and southern parts which followed precipitation seasonality. TMPA performed the best, followed in order by CHIRPS, MSWEP and PERSIANN-CDR.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
20 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 629: Efficient Identification of Corn Cultivation Area with Multitemporal Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform (Remote Sensing)
Remote Sensing, Vol. 11, Pages 632: A Method for Landsat and Sentinel 2 (HLS) BRDF Normalization (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn