MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 1051: Influence of Thiazolidine-2,4-Dione Derivatives with Azolidine or Thiosemicarbazone Moieties on Haemophilus spp. Planktonic or Biofilm-Forming Cells (Molecules)

 
 

17 march 2019 05:04:42

 
Molecules, Vol. 24, Pages 1051: Influence of Thiazolidine-2,4-Dione Derivatives with Azolidine or Thiosemicarbazone Moieties on Haemophilus spp. Planktonic or Biofilm-Forming Cells (Molecules)
 


Biofilm, naturally formed by microorganisms as integrated surface-bound communities, is one of the reasons for the development of antimicrobial resistance. Haemophilus spp. are common and representative opportunistic Gram-negative rods forming from the upper respiratory tract microbiota. The aim of this paper was to evaluate the influence of thiazolidine-2,4-dionebased azolidine and chlorophenylthiosemicarbazone hybrids against both planktonic and biofilm-forming Haemophilus spp. cells. The in vitro activity against planktonic and biofilm-forming cells of the tested compounds were evaluated by using the broth microdilution method. These activities were detected against reference and clinical strains of Haemophilus spp. on the basis of MICs (minimal inhibitory concentrations) and MBICs (minimal biofilm inhibitory concentrations). In addition, anti-adhesive properties of these compounds were examined. The target compounds showed potential activity against planktonic cells with MIC = 62.5–500 mg/L and biofilm-forming cells with MBIC = 62.5–1000 mg/L. The observed anti-adhesive properties of the tested compounds were reversible during long-term incubation in a lower concentration of compounds.


 
127 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 1044: In House Validated UHPLC Protocol for the Determination of the Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil Fit for the Purpose of the Health Claim Introduced by the EC Regulation 432/2012 for `Olive Oil Polyphenols` (Molecules)
Molecules, Vol. 24, Pages 1050: Metal-Ligand Recognition Index Determination by NMR Proton Relaxation Study (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten