MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 914: Oxidation Resistance and Microstructure Evaluation of a Polymer Derived Ceramic (PDC) Composite Coating Applied onto Sintered Steel (Materials)

 
 

19 march 2019 13:02:01

 
Materials, Vol. 12, Pages 914: Oxidation Resistance and Microstructure Evaluation of a Polymer Derived Ceramic (PDC) Composite Coating Applied onto Sintered Steel (Materials)
 


Powder metallurgy is a competitive technology to produce ferrous near net shape parts for diverse engineering applications. However, their inherent porosity increases the susceptibility to oxidation and sealing their surface is mandatory to avoid premature degradation. Alongside, polymer derived ceramics (PDCs), such as silicon-carbonitride, have drawn attention concerning their high temperature and chemical stability. However, PDCs undergo volume shrinkage during ceramization that leads to defect formation. The shrinkage can be compensated by the addition of fillers, which are also capable of tailoring the ceramic resulting properties. This work evaluates the processing of PDC-based coatings loaded with ZrO2 and glass fillers to compensate for the shrinkage, densify the coating and seal the sintered steel surface. Therefore, polymeric slurries were sprayed onto sintered steel substrates, which were pyrolyzed at different temperatures for microstructural and oxidation resistance evaluation. Microstructural modifications caused by the enhanced glass viscous flow during pyrolysis at 800 °C resulted in more homogeneous, dense and protective coatings, which reduced the mass gain up to 40 wt% after 100 h of oxidation at 450 °C in air in comparison to the uncoated substrate. Moreover, no macrocracks or spallation were detected, confirming the feasibility of PDC composite barrier coatings for sintered steels.


 
104 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 915: Advantages of the Application of the Temper Bead Welding Technique During Wet Welding (Materials)
Materials, Vol. 12, Pages 913: Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten