MyJournals Home  

RSS FeedsMarine Drugs, Vol. 17, Pages 179: Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga Ulva intestinalis (Marine Drugs)

 
 

19 march 2019 15:00:51

 
Marine Drugs, Vol. 17, Pages 179: Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga Ulva intestinalis (Marine Drugs)
 


Angiotensin I-converting enzyme (ACE) inhibitory peptides derived from seaweed represent a potential source of new antihypertensive. The aim of this study was to isolate and purify ACE inhibitory peptides (ACEIPs) from the protein hydrolysate of the marine macroalga Ulva intestinalis. U. intestinalis protein was hydrolyzed by five different proteases (trypsin, pepsin, papain, α-chymotrypsin, alcalase) to prepare peptides; compared with other hydrolysates, the trypsin hydrolysates exhibited the highest ACE inhibitory activity. The hydrolysis conditions were further optimized by response surface methodology (RSM), and the optimum conditions were as follows: pH 8.4, temperature 28.5 °C, enzyme/protein ratio (E/S) 4.0%, substrate concentration 15 mg/mL, and enzymolysis time 5.0 h. After fractionation and purification by ultrafiltration, gel exclusion chromatography and reverse-phase high-performance liquid chromatography, two novel purified ACE inhibitors with IC50 values of 219.35 μM (0.183 mg/mL) and 236.85 μM (0.179 mg/mL) were obtained. The molecular mass and amino acid sequence of the ACE inhibitory peptides were identified as Phe-Gly-Met-Pro-Leu-Asp-Arg (FGMPLDR; MW 834.41 Da) and Met-Glu-Leu-Val-Leu-Arg (MELVLR; MW 759.43 Da) by ultra-performance liquid chromatography-tandem mass spectrometry. A molecular docking study revealed that the ACE inhibitory activities of the peptides were mainly attributable to the hydrogen bond and Zn(II) interactions between the peptides and ACE. The results of this study provide a theoretical basis for the high-valued application of U. intestinalis and the development of food-derived ACE inhibitory peptides.


 
39 viewsCategory: Biochemistry, Molecular Biology, Pharmacology
 
Marine Drugs, Vol. 17, Pages 180: In Silico Analysis of the Subtype Selective Blockage of KCNA Ion Channels through the µ-Conotoxins PIIIA, SIIIA, and GIIIA (Marine Drugs)
Marine Drugs, Vol. 17, Pages 181: Comparative Transcriptome Analyses Provide Potential Insights into the Molecular Mechanisms of Astaxanthin in the Protection against Alcoholic Liver Disease in Mice (Marine Drugs)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten