MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 1135: Chiral Selectors in Capillary Electrophoresis: Trends During 2017-2018 (Molecules)


21 march 2019 21:04:43

Molecules, Vol. 24, Pages 1135: Chiral Selectors in Capillary Electrophoresis: Trends During 2017-2018 (Molecules)

Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mode is an established analytical technique for chiral separations. A water-soluble chiral selector is typically used. This review therefore examines the use of various chiral selectors in electrokinetic chromatography during 2017–2018. The chiral selectors were both low and high (macromolecules) molecular mass molecules as well as molecular aggregates (supramolecules). There were 58 papers found by search in Scopus, indicating continuous and active activity in this research area. The macromolecules were sugar-, amino acid-, and nucleic acid-based polymers. The supramolecules were bile salt micelles. The low molecular mass selectors were mainly ionic liquids and complexes with a central ion. A majority of the papers were on the use or preparation of sugar-based macromolecules, e.g., native or derivatised cyclodextrins. Studies to explain chiral recognition of macromolecular and supramolecular chiral selectors were mainly done by molecular modelling and nuclear magnetic resonance spectroscopy. Demonstrations were predominantly on drug analysis for the separation of racemates. Digg Facebook Google StumbleUpon Twitter
35 viewsCategory: Biochemistry, Chemistry, Molecular Biology
Molecules, Vol. 24, Pages 1136: Phytochemical Diversity in Rhizomes of Three Reynoutria Species and their Antioxidant Activity Correlations Elucidated by LC-ESI-MS/MS Analysis. (Molecules)
Molecules, Vol. 24, Pages 1134: A Peptide-Based HIV-1 Fusion Inhibitor with Two Tail-Anchors and Palmitic Acid Exhibits Substantially Improved In Vitro and Ex Vivo Anti-HIV-1 Activity and Prolonged In Vivo Half-Life (Molecules)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve


Molecular Biology

Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn