MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 906: D-ATR for SAR Images Based on Deep Neural Networks (Remote Sensing)

 
 

13 april 2019 14:00:30

 
Remote Sensing, Vol. 11, Pages 906: D-ATR for SAR Images Based on Deep Neural Networks (Remote Sensing)
 


Automatic target recognition (ATR) can obtain important information for target surveillance from Synthetic Aperture Radar (SAR) images. Thus, a direct automatic target recognition (D-ATR) method, based on a deep neural network (DNN), is proposed in this paper. To recognize targets in large-scene SAR images, the traditional methods of SAR ATR are comprised of four major steps: detection, discrimination, feature extraction, and classification. However, the recognition performance is sensitive to each step, as the processing result from each step will affect the following step. Meanwhile, these processes are independent, which means that there is still room for processing speed improvement. The proposed D-ATR method can integrate these steps as a whole system and directly recognize targets in large-scene SAR images, by encapsulating all of the computation in a single deep convolutional neural network (DCNN). Before the DCNN, a fast sliding method is proposed to partition the large image into sub-images, to avoid information loss when resizing the input images, and to avoid the target being divided into several parts. After the DCNN, non-maximum suppression between sub-images (NMSS) is performed on the results of the sub-images, to obtain an accurate result of the large-scene SAR image. Experiments on the MSTAR dataset and large-scene SAR images (with resolution 1478 × 1784) show that the proposed method can obtain a high accuracy and fast processing speed, and out-performs other methods, such as CFAR+SVM, Region-based CNN, and YOLOv2.


 
81 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 899: Evaluation and Validation of CryoSat-2-Derived Water Levels Using In Situ Lake Data from China (Remote Sensing)
Remote Sensing, Vol. 11, Pages 905: Design, Calibration, and Evaluation of a Backpack Indoor Mobile Mapping System (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten