MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 904: Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data (Remote Sensing)

 
 

13 april 2019 14:00:30

 
Remote Sensing, Vol. 11, Pages 904: Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data (Remote Sensing)
 


The critical role of water in enabling or constraining human well-being and socioeconomic activities has led to an interest in quantitatively establishing the status of water (in)sufficiency over space and time. Falkenmark introduced the first widely accepted measure of water status, the Water Scarcity Index (WSI), which expressed the status of the availability of water resources in terms of vulnerability, stress, and scarcity. Since then, numerous indicators have been introduced, but nearly all adopt the same basic formulation; water status is a function of “available water” resource—by the demand or use. However, the accurate assessment of “available water” is difficult, especially in data-scarce regions, such as Africa. In this paper, therefore, we introduce a satellite-based Potential Available Water Storage indicator, PAWS. The method integrates GRACE (Gravity Recovery and Climate Experiment) satellite Total Water Storage (TWS) measurements with the Tropical Rainfall Measuring Mission (TRMM) precipitation estimates between 2002 and 2016. First, we derived the countries’ Internal Water Storage (IWS) using GRACE and TRMM precipitation data. Then, the IWS was divided by the population density to derive the PAWS per capita. Following the Falkenmark thresholds, 54% of countries are classified in the same water vulnerability status as the AQUASTAT Internal Renewable Water Resources (IRWR) method. Of the remaining countries, PAWS index leads to one or two categories shift (left or right) of water status. The PAWS index shows that 14% (~160 million people) of Africa’s population currently live under water scarcity status. With respect to future projections, PAWS index suggests that a 10% decrease in future water resources would affect ~37% of Africa’s 2025 population (~600 million people), and 57% for 2050 projections (~1.4-billion people). The proposed approach largely overcomes the constraints related to the data needed to rapidly and robustly estimate available water resources by incorporating all stocks of water within the country, as well as underscores the recent water storage dynamics. However, the estimates obtained concern potential available water resources, which may not be utilizable for practical, economic, and technological issues.


 
80 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 905: Design, Calibration, and Evaluation of a Backpack Indoor Mobile Mapping System (Remote Sensing)
Remote Sensing, Vol. 11, Pages 903: Rubber Tree Crown Segmentation and Property Retrieval using Ground-Based Mobile LiDAR after Natural Disturbances (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten