MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 908: Assessment of Individual Tree Detection and Canopy Cover Estimation using Unmanned Aerial Vehicle based Light Detection and Ranging (UAV-LiDAR) Data in Planted Forests (Remote Sensing)

 
 

14 april 2019 12:02:03

 
Remote Sensing, Vol. 11, Pages 908: Assessment of Individual Tree Detection and Canopy Cover Estimation using Unmanned Aerial Vehicle based Light Detection and Ranging (UAV-LiDAR) Data in Planted Forests (Remote Sensing)
 


Canopy cover is a key forest structural parameter that is commonly used in forest inventory, sustainable forest management and maintaining ecosystem services. Recently, much attention has been paid to the use of unmanned aerial vehicle (UAV)-based light detection and ranging (LiDAR) due to the flexibility, convenience, and high point density advantages of this method. In this study, we used UAV-based LiDAR data with individual tree segmentation-based method (ITSM), canopy height model-based method (CHMM), and a statistical model method (SMM) with LiDAR metrics to estimate the canopy cover of a pure ginkgo (Ginkgo biloba L.) planted forest in China. First, each individual tree within the plot was segmented using watershed, polynomial fitting, individual tree crown segmentation (ITCS) and point cloud segmentation (PCS) algorithms, and the canopy cover was calculated using the segmented individual tree crown (ITSM). Second, the CHM-based method, which was based on the CHM height threshold, was used to estimate the canopy cover in each plot. Third, the canopy cover was estimated using the multiple linear regression (MLR) model and assessed by leave-one-out cross validation. Finally, the performance of three canopy cover estimation methods was evaluated and compared by the canopy cover from the field data. The results demonstrated that, the PCS algorithm had the highest accuracy (F = 0.83), followed by the ITCS (F = 0.82) and watershed (F = 0.79) algorithms; the polynomial fitting algorithm had the lowest accuracy (F = 0.77). In the sensitivity analysis, the three CHM-based algorithms (i.e., watershed, polynomial fitting and ITCS) had the highest accuracy when the CHM resolution was 0.5 m, and the PCS algorithm had the highest accuracy when the distance threshold was 2 m. In addition, the ITSM had the highest accuracy in estimation of canopy cover (R2 = 0.92, rRMSE = 3.5%), followed by the CHMM (R2 = 0.94, rRMSE = 5.4%), and the SMM had a relative low accuracy (R2 = 0.80, rRMSE = 5.9%).The UAV-based LiDAR data can be effectively used in individual tree crown segmentation and canopy cover estimation at plot-level, and CC estimation methods can provide references for forest inventory, sustainable management and ecosystem assessment.


 
111 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 909: The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002-2017 (Remote Sensing)
Remote Sensing, Vol. 11, Pages 910: Widespread Decline in Vegetation Photosynthesis in Southeast Asia Due to the Prolonged Drought During the 2015/2016 El Niņo (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten