MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 1269: Structure-Property Relationships in Hybrid Cellulose Nanofibrils/Nafion-Based Ionic Polymer-Metal Composites (Materials)

 
 

18 april 2019 12:00:01

 
Materials, Vol. 12, Pages 1269: Structure-Property Relationships in Hybrid Cellulose Nanofibrils/Nafion-Based Ionic Polymer-Metal Composites (Materials)
 


Herein, we report the production of ionic polymer-metal composites (IPMCs) hybridized with cellulose nanofibrils (CNF) as a partial substitute for Nafion®. The aim is not only to reduce the production cost and enhance respective mechanical/thermal properties but also to bestow a considerable degree of biodegradability to such products. Formulations with different CNF/Nafion® ratios were produced in a thin-film casting process. Crack-free films were air-dried and plated by platinum (Pt) through an oxidation-reduction reaction. The produced hybrids were analyzed in terms of thermal stability, mechanical and morphological aspects to examine their performance compared to the Nafion-based IPMC prior to plating process. Results indicated that films with higher CNF loadings had improved tensile strengths and elastic moduli but reduced ductility. Thermogravimetric analysis (TGA) showed that the incorporation of CNF to the matrix reduced its thermal stability almost linearly, however, the onset of decomposition point remained above 120 °C, which was far above the temperature the composite membrane is expected to be exposed to. The addition of a cross-linking agent to the formulations helped with maintaining the integrity of the membranes during the plating process, thereby improving surface conductivity. The focus of the current study was on the physical and morphological properties of the films, and the presented data advocate the potential utilization of CNF as a nontoxic and sustainable bio-polymer for blending with perfluorosulfonic acid-based co-polymers, such as Nafion®, to be used in electroactive membranes.


 
98 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 1272: Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches (Materials)
Materials, Vol. 12, Pages 1268: Effects of Ca/Si Ratio, Aluminum and Magnesium on the Carbonation Behavior of Calcium Silicate Hydrate (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten