MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 970: Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping (Remote Sensing)

 
 

23 april 2019 19:00:27

 
Remote Sensing, Vol. 11, Pages 970: Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping (Remote Sensing)
 


Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hyperspectral (HS) and Airborne Laser System (ALS) data fusion acquired in separate flights, Multiple Flights Data Fusion (MFDF), and during a single flight through Instrument Fusion (IF) for the classification of non-forest vegetation. An area of 6.75 km2 was selected, where hyperspectral and ALS data was collected during two flights in 2015 and one flight in 2017. This data was used to classify three non-forest Natura 2000 habitats i.e., Xeric sand calcareous grasslands (code 6120), alluvial meadows of river valleys of the Cnidion dubii (code 6440), species-rich Nardus grasslands (code 6230) using a Random Forest classifier. Our findings show that it is not possible to determine which sensor, HS, or ALS used independently leads to a higher classification accuracy for investigated Natura 2000 habitats. Concurrently, increased stability and consistency of classification results was confirmed, regardless of the type of fusion used; IF, MFDF and varied information relevance of single sensor data. The research shows that the manner of data collection, using MFDF or IF, does not determine the level of relevance of ALS or HS data. The analysis of fusion effectiveness, gauged as the accuracy of the classification result and time consumed for data collection, has shown a superiority of IF over MFDF. IF delivered classification results that are more accurate compared to MFDF. IF is always cheaper than MFDF and the difference in effectiveness of both methods becomes more pronounced when the area of aerial data collection becomes larger.


 
60 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 971: Heat and Drought Stress Advanced Global Wheat Harvest Timing from 1981-2014 (Remote Sensing)
Remote Sensing, Vol. 11, Pages 963: Spectral-Spatial Attention Networks for Hyperspectral Image Classification (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten