MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 1372: AFM-Nano Manipulation of Plasmonic Molecules Used as `Nano-Lens` to Enhance Raman of Individual Nano-Objects (Materials)

 
 

27 april 2019 12:03:13

 
Materials, Vol. 12, Pages 1372: AFM-Nano Manipulation of Plasmonic Molecules Used as `Nano-Lens` to Enhance Raman of Individual Nano-Objects (Materials)
 


This paper explores the enhancement of Raman signals using individual nano-plasmonic structures and demonstrates the possibility to obtain controlled gold plasmonic nanostructures by atomic force microscopy (AFM) manipulation under a confocal Raman device. By manipulating the gold nanoparticles (Nps) while monitoring them using a confocal microscope, it is possible to generate individual nano- structures, plasmonic molecules not accessible currently by lithography at these nanometer scales. This flexible approach allows us to tune plasmonic resonance of the nanostructures, to generate localized hot spots and to circumvent the effects of strong electric near field gradients intrinsic to Tip Enhanced Raman Spectroscopy (TERS) or Surface Enhanced Raman Spectroscopy (SERS) experiments. The inter Np distances and symmetry of the plasmonic molecules in interaction with other individual nano-objects control the resonance conditions of the assemblies and the enhancement of their Raman responses. This paper shows also how some plasmonic structures generate localized nanometric areas with high electric field magnitude without strong gradient. These last plasmonic molecules may be used as "nano-lenses" tunable in wavelength and able to enhance Raman signals of neighbored nano-object. The positioning of one individual probed nano-object in the spatial area defined by the nano-lens becomes then very non-restrictive, contrary to TERS experiments where the spacing distance between tip and sample is crucial. The experimental flexibility obtained in these approaches is illustrated here by the enhanced Raman scatterings of carbon nanotube.


 
65 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 1973: Optimal Path Planning for Selective Waste Collection in Smart Cities (Sensors)
Sensors, Vol. 19, Pages 1980: Capillary Sensor with Disposable Optrode for Diesel Fuel Quality Testing (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten